Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Heliyon ; 10(7): e29006, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601575

RESUMEN

The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to -25.3%, -29.6% and -57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has -204.9 value for AIC which has grown by 5.23% (-194.7) compared to the state without any pre-processing method (ANN_Relu_25).

2.
Sci Rep ; 14(1): 8318, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594356

RESUMEN

The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Niño , Humanos , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hungría , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Ríos/química , Agua , Contaminantes Químicos del Agua/análisis , Adulto
3.
Sci Rep ; 14(1): 6533, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503773

RESUMEN

Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.


Asunto(s)
Compuestos de Amonio , Contaminantes del Suelo , Suelo/química , Fósforo , Arena , Arcilla , Nitratos , Nitrógeno , Carbón Orgánico/química , Contaminantes del Suelo/análisis
5.
Sci Rep ; 14(1): 3661, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351288

RESUMEN

A straightforward and efficient spectrum technique was created using Ortho-chloranil as the electron acceptor (-acceptor) in a charge transfer (CT) complex formation reaction to determine the concentration of famotidine (FMD) in solutions. Compared to the double-distilled blank solution, the reaction result detected a definite violet colour at a maximum absorption wavelength of 546 nm, For concentrations range 2-28 µg/ml, the technique demonstrated excellent compliance with Beer-Law and Lambert's, as evidenced by its molar absorptivity of 2159.648 L mol-1 cm-1. Lower detection limits of 0.3024 µg/ml and 1.471 µg/ml, respectively, were discovered. The complexes of famotidine and Ortho-chloranil were found to have a 2:1 stoichiometry. Additionally, the suggested approach effectively estimated famotidine concentrations in pharmaceutical formulations, particularly in tablet form.


Asunto(s)
Cloranilo , Famotidina , Espectrofotometría/métodos , Comprimidos , Formas de Dosificación
6.
Sci Rep ; 14(1): 3053, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321086

RESUMEN

An accurate assessment of nitrate leaching is important for efficient fertiliser utilisation and groundwater pollution reduction. However, past studies could not efficiently model nitrate leaching due to utilisation of conventional algorithms. To address the issue, the current research employed advanced machine learning algorithms, viz., Support Vector Machine, Artificial Neural Network, Random Forest, M5 Tree (M5P), Reduced Error Pruning Tree (REPTree) and Response Surface Methodology (RSM) to predict and optimize nitrate leaching. In this study, Urea Super Granules (USG) with three different coatings were used for the experiment in the soil columns, containing 1 kg soil with fertiliser placed in between. Statistical parameters, namely correlation coefficient, Mean Absolute Error, Willmott index, Root Mean Square Error and Nash-Sutcliffe efficiency were used to evaluate the performance of the ML techniques. In addition, a comparison was made in the test set among the machine learning models in which, RSM outperformed the rest of the models irrespective of coating type. Neem oil/ Acacia oil(ml): clay/sulfer (g): age (days) for minimum nitrate leaching was found to be 2.61: 1.67: 2.4 for coating of USG with bentonite clay and neem oil without heating, 2.18: 2: 1 for bentonite clay and neem oil with heating and 1.69: 1.64: 2.18 for coating USG with sulfer and acacia oil. The research would provide guidelines to researchers and policymakers to select the appropriate tool for precise prediction of nitrate leaching, which would optimise the yield and the benefit-cost ratio.

8.
Sci Rep ; 14(1): 4255, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383678

RESUMEN

One of the direct and unavoidable consequences of global warming-induced rising temperatures is the more recurrent and severe heatwaves. In recent years, even countries like Malaysia seldom had some mild to severe heatwaves. As the Earth's average temperature continues to rise, heatwaves in Malaysia will undoubtedly worsen in the future. It is crucial to characterize and monitor heat events across time to effectively prepare for and implement preventative actions to lessen heatwave's social and economic effects. This study proposes heatwave-related indices that take into account both daily maximum (Tmax) and daily lowest (Tmin) temperatures to evaluate shifts in heatwave features in Peninsular Malaysia (PM). Daily ERA5 temperature dataset with a geographical resolution of 0.25° for the period 1950-2022 was used to analyze the changes in the frequency and severity of heat waves across PM, while the LandScan gridded population data from 2000 to 2020 was used to calculate the affected population to the heatwaves. This study also utilized Sen's slope for trend analysis of heatwave characteristics, which separates multi-decadal oscillatory fluctuations from secular trends. The findings demonstrated that the geographical pattern of heatwaves in PM could be reconstructed if daily Tmax is more than the 95th percentile for 3 or more days. The data indicated that the southwest was more prone to severe heatwaves. The PM experienced more heatwaves after 2000 than before. Overall, the heatwave-affected area in PM has increased by 8.98 km2/decade and its duration by 1.54 days/decade. The highest population affected was located in the central south region of PM. These findings provide valuable insights into the heatwaves pattern and impact.

9.
Sci Rep ; 14(1): 4032, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369532

RESUMEN

The current study involves a synthesis of a composite of nickel oxide nanoparticles (NiONPs) with a chromium dopant to yield (Cr/NiONPs). Synthesis of nickel oxide was performed by the co-precipitation method. The synthesis of the composite was conducted by the impregnation method. FTIR, EDX, SEM, and XRD were used to characterize the synthesized materials. The synthesised materials' point zero charges (PZC) were performed using the potentiometric titration method. The obtained results show that the PZC for neat nickel oxide was around 5, and it was around 8 for Cr/NiONPs. The adsorption action of the prepared materials was examined by applying them to remove Reactive Red 2 (RR2) and Crystal Violate (CV) dyes from solutions. The outcomes demonstrated that Cr/NiONPs were stronger in the removal of dyes than NiONPs. Cr/NiONPs achieved 99.9% removal of dyes after 1 h. Adsorption isotherms involving Freundlich and Langmuir adsorption isotherms were also conducted, and the outcomes indicated that the most accurate representation of the adsorption data was offered by Langmuir adsorption isotherms. Additionally, it was discovered that the adsorption characteristics of the NiONPs and Cr/NiONPs correspond well with the pseudo-second-order kinetic model. Each of the NiONPs and Cr/NiONPs was reused five times, and the results display that the effectiveness of the removal of RR2 dye slightly declined with the increase in reuse cycles; it lost only 5% of its original efficiency after the 5 cycles. Generally, Cr/NiONPs showed better reusability than NiONPs under the same conditions.

10.
Sci Rep ; 14(1): 337, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172121

RESUMEN

In the plains of western North India, traditional rice and wheat cropping systems (RWCS) consume a significant amount of energy and carbon. In order to assess the long-term energy budgets, ecological footprint, and greenhouse gas (GHG) pollutants from RWCS with residual management techniques, field research was conducted which consisted of fourteen treatments that combined various tillage techniques, fertilization methods, and whether or not straw return was present in randomized block design. By altering the formation of aggregates and the distribution of carbon within them, tillage techniques can affect the dynamics of organic carbon in soil and soil microbial activity. The stability of large macro-aggregates (> 2 mm), small macro-aggregates (2.0-2.25 mm), and micro-aggregates in the topsoil were improved by 35.18%, 33.52%, and 25.10%, respectively, over conventional tillage (0-20 cm) using tillage strategies for conservation methods (no-till in conjunction with straw return and organic fertilizers). The subsoil (20-40 cm) displayed the same pattern. In contrast to conventional tilling with no straw returns, macro-aggregates of all sizes and micro-aggregates increased by 24.52%, 28.48%, and 18.12%, respectively, when conservation tillage with organic and chemical fertilizers was used. The straw return (aggregate-associated C) also resulted in a significant increase in aggregate-associated carbon. When zero tillage was paired with straw return, chemical, and organic fertilizers, the topsoil's overall aggregate-associated C across all aggregate proportions increased. Conversely, conventional tillage, in contrast to conservation tillage, included straw return as well as chemical and organic fertilizers and had high aggregate-associated C in the subsurface. This study finds that tillage techniques could change the dynamics of microbial biomass in soils and organic soil carbon by altering the aggregate and distribution of C therein.


Asunto(s)
Oryza , Suelo , Carbono/análisis , Triticum , Huella de Carbono , Fertilizantes , Agricultura/métodos , China
11.
Sci Rep ; 14(1): 1399, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228839

RESUMEN

In the context of degradation of soil health, environmental pollution, and yield stagnation in the rice-wheat system in the Indo-Gangetic Plains of South Asia, an experiment was established in split plot design to assess the long-term effect of crop residue management on productivity and phosphorus requirement of wheat in rice-wheat system. The experiment comprised of six crop residue management practices as the main treatment factor with three levels (0, 30 and 60 kg P2O5 ha-1) of phosphorus fertilizer as sub-treatments. Significant improvement in soil aggregation, bulk density, and infiltration rate was observed under residue management (retention/incorporation) treatments compared to residue removal or residue burning. Soil organic carbon (SOC), available nutrient content (N, P, and K), microbial count, and enzyme activities were also significantly higher in conservation tillage and residue-treated plots than without residue/burning treatments. The residue derived from both crops when was either retained/incorporated improved the soil organic carbon (0.80%) and resulted in a significant increase in SOC (73.9%) in the topsoil layer as compared to the conventional practice. The mean effect studies revealed that crop residue management practices and phosphorus levels significantly influenced wheat yield attributes and productivity. The higher grain yield of wheat was recorded in two treatments, i.e. the basal application of 60 kg P2O5 ha-1 without residue incorporation and the other with half the P-fertilizer (30 kg P2O5 ha-1) with rice residue only. The grain yield of wheat where the rice and wheat residue were either retained/incorporated without phosphorus application was at par with 30 and 60 kg P2O5ha-1. Phosphorus levels also significantly affected wheat productivity and available P content in the soil. Therefore, results suggested that crop residue retention following the conservation tillage approach improved the yield of wheat cultivated in the rice-wheat cropping system.


Asunto(s)
Oryza , Suelo , Suelo/química , Agricultura/métodos , Triticum/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Fertilizantes/análisis , Grano Comestible/metabolismo , Fertilización
12.
Sci Rep ; 14(1): 970, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200095

RESUMEN

The treatment of methylene blue (MB) dye wastewater through the adsorption process has been a subject of extensive research. However, a comprehensive understanding of the thermodynamic aspects of dye solution adsorption is lacking. Previous studies have primarily focused on enhancing the adsorption capacity of methylene blue dye. This study aimed to develop an environmentally friendly and cost-effective method for treating methylene blue dye wastewater and to gain insights into the thermodynamics and kinetics of the adsorption process for optimization. An adsorbent with selective methylene blue dye adsorption capabilities was synthesized using rice straw as the precursor. Experimental studies were conducted to investigate the adsorption isotherms and models under various process conditions, aiming to bridge gaps in previous research and enhance the understanding of adsorption mechanisms. Several adsorption isotherm models, including Langmuir, Temkin, Freundlich, and Langmuir-Freundlich, were applied to theoretically describe the adsorption mechanism. Equilibrium thermodynamic results demonstrated that the calculated equilibrium adsorption capacity (qe) aligned well with the experimentally obtained data. These findings of the study provide valuable insights into the thermodynamics and kinetics of methylene blue dye adsorption, with potential applications beyond this specific dye type. The utilization of rice straw as an adsorbent material presents a novel and cost-effective approach for MB dye removal from wastewater.

13.
Heliyon ; 9(11): e21799, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034807

RESUMEN

Efficient thermal insulation materials considerably lower power consumption for heating and cooling of buildings, which in turn minimises CO2 emissions and improves indoor comfort conditions. However, the selection of suitable insulation materials is governed by several factors, such as the environmental impact, health impact, cost and durability. Additionally, the disposal of used insulation materials is a major factor that affects the selection of materials because some materials could be very toxic for humans and the environment, such as asbestos-containing materials. Therefore, there is a continuous research effort, in both industry and academia, to develop sustainable and affordable insulation materials. In this context, this work aims at utilising the packing industry wastes (cardboard) to develop an eco-friendly insulation layer, which is a biodegradable material that can be disposed of safely after use. Experimentally, wasted cardboard was collected, cleaned, and soaked in water for 24 h. Then, the wet cardboard was minced and converted into past papers, then cast in square moulds and left in a ventilated oven at 75 °C to dry before de-moulding them. The produced layers were subjected to a wide range of tests, including thermal conductivity, acoustic insulation, infrared imaging and bending resistance. The obtained results showed the developed material has a good thermal and acoustic insulation performance. Thermally, the developed material had the lowest thermal conductivity (λ) (0.039 W/m.K) compared to the studied traditional materials. Additionally, it successfully decreased the noise level from 80 to about 58 dB, which was better than the efficiency of the commercial polyisocyanurate layer. However, the bending strength of the developed material was a major drawback because the material did not resist more than 0.6 MPa compared to 2.0 MPa for the commercial polyisocyanurate and 70.0 MPa for the wood boards. Therefore, it is recommended to investigate the possibility of strengthening the new material by adding fibres or cementitious materials.

14.
Sci Rep ; 13(1): 20454, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993558

RESUMEN

Rapid industrialization, urbanization, global warming, and climate change are compromising surface water quality across the globe. Consequently, water conservation is essential for both environmental sustainability and human survival. This study assesses the water quality of the Jamuna River in Bangladesh at five distinct sites during wet and dry seasons. It employs six global water quality indices (WQIs) and contrasts the results with Bangladesh's Environmental Quality Standard (EQS) and the Department of Environment (DoE) criteria. The WQI models used are the Weighted Arithmetic WQI (WAWQI), British Columbia WQI (BCWQI), Canadian Council of Ministers of the Environment WQI (CWQI), Assigned WQI (AWQI), Malaysian WQI (MWQI), and Oregon WQI (OWQI). Fifteen physicochemical parameters were analyzed according to each WQI model's guidelines. The findings reveal that most parameters surpass the standard permissible values. The WQI model results indicate that the average water quality across the five sites falls into the lowest category. A comparison of the WQI models suggests potential correlations between WAWQI and AWQI, as well as between MWQI and OWQI. The straightforward presentation of the WQI models indicates that while the river water requires treatment for household and drinking use, it remains suitable for irrigation. The decline in water quality is likely attributable to human activities, urbanization, municipal waste disposal, and industrial effluents. Authorities must prioritize regular monitoring and assessment of water quality to address the identified challenges. Restoring the water to an acceptable standard will become increasingly difficult without proactive measures.

15.
Chemosphere ; 344: 140338, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820876

RESUMEN

Estrogenic hormones, found as micropollutants in water systems, give rise to grave concerns for human health and marine ecosystems, triggering a cascade of adverse effects. This research presents an innovative manufacturing approach using nanoscale layered double hydroxides of magnesium and iron, with sodium dodecyl sulfate surfactant, to create highly efficient sorbent cement kiln dust (CKD) based beads (CKD/MgFe-SDS-LDH-beads). These beads effectively remove estrone from water. Optimization of the preparation process considered factors like molar Mg/Fe ratio, CKD dosage, pH, and SDS dosage using Response Surface Methodology (RSM). The adsorption process was well-characterized by Langmuir isotherm and pseudo-second-order kinetic models, demonstrating a remarkable 6.491 mg/g sorption capacity. Results proved that the calcite was the main component of the CKD with miners of dolomite, and quartz. Adsorption capacity, surface charges, and the availability of vacant sites may be the main mechanisms responsible of removal process. Experimental tests confirmed the beads' potential for estrone removal, aligning with the Bohart-Adams and Thomas-BDST models. This study introduces a promising, eco-friendly solution for addressing water contamination challenges.


Asunto(s)
Nanopartículas , Insuficiencia Renal Crónica , Contaminantes Químicos del Agua , Humanos , Agua , Dodecil Sulfato de Sodio , Adsorción , Estrona , Ecosistema , Hidróxidos/química , Estrógenos , Contaminantes Químicos del Agua/química , Cinética
16.
PeerJ ; 11: e15852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780384

RESUMEN

The alarming pace of environmental degradation necessitates the treatment of wastewater from the oil industry in order to ensure the long-term sustainability of human civilization. Electrocoagulation has emerged as a promising method for optimizing the removal of chemical oxygen demand (COD) from wastewater obtained from oil refineries. Therefore, in this study, electrocoagulation was experimentally investigated, and a single-factorial approach was employed to identify the optimal conditions, taking into account various parameters such as current density, pH, COD concentration, electrode surface area, and NaCl concentration. The experimental findings revealed that the most favorable conditions for COD removal were determined to be 24 mA/cm2 for current density, pH 8, a COD concentration of 500 mg/l, an electrode surface area of 25.26 cm2, and a NaCl concentration of 0.5 g/l. Correlation equations were proposed to describe the relationship between COD removal and the aforementioned parameters, and double-factorial models were examined to analyze the impact of COD removal over time. The most favorable outcomes were observed after a reaction time of 20 min. Furthermore, an artificial neural network model was developed based on the experimental data to predict COD removal from wastewater generated by the oil industry. The model exhibited a mean absolute error (MAE) of 1.12% and a coefficient of determination (R2) of 0.99, indicating its high accuracy. These findings suggest that machine learning-based models have the potential to effectively predict COD removal and may even serve as viable alternatives to traditional experimental and numerical techniques.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Análisis de la Demanda Biológica de Oxígeno , Cloruro de Sodio , Residuos Industriales/análisis , Concentración de Iones de Hidrógeno , Electrocoagulación/métodos , Purificación del Agua/métodos
17.
Comput Struct Biotechnol J ; 21: 4647-4662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841331

RESUMEN

Many Bacillus species are essential antibacterial agents, but their antibiosis potential still needs to be elucidated to its full extent. Here, we isolated a soil bacterium, BP9, which has significant antibiosis activity against fungal and bacterial pathogens. BP9 improved the growth of wheat seedlings via active colonization and demonstrated effective biofilm and swarming activity. BP9 sequenced genome contains 4282 genes with a mean G-C content of 45.94% of the whole genome. A single copy concatenated 802 core genes of 28 genomes, and their calculated average nucleotide identity (ANI) discriminated the strain BP9 from Bacillus licheniformis and classified it as Bacillus paralicheniformis. Furthermore, a comparative pan-genome analysis of 40 B. paralicheniformis strains suggested that the genetic repertoire of BP9 belongs to open-type genome species. A comparative analysis of a pan-genome dataset using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Gene groups (COG) revealed the diversity of secondary metabolic pathways, where BP9 distinguishes itself by exhibiting a greater prevalence of loci associated with the metabolism and transportation of organic and inorganic substances, carbohydrate and amino acid for effective inhabitation in diverse environments. The primary secondary metabolites and their genes involved in synthesizing bacillibactin, fencing, bacitracin, and lantibiotics were identified as acquired through a recent Horizontal gene transfer (HGT) event, which contributes to a significant part of the strain`s antimicrobial potential. Finally, we report some genes essential for plant-host interaction identified in BP9, which reduce spore germination and virulence of multiple fungal and bacterial species. The effective colonization, diverse predicted metabolic pathways and secondary metabolites (antibiotics) suggest testing the suitability of strain BP9 as a potential bio-preparation in agricultural fields.

18.
Sci Rep ; 13(1): 15193, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709862

RESUMEN

Methane (CH4) is a greenhouse gas resulting from human activities, especially landfills, and it has many potential environmental issues, such as its major role in global warming. On the other hand, methane can be converted to liquid fuel or electricity using chemical conversion or gas turbine generators. Therefore, reusing such gases could be of great environmental and economic benefit. In this context, this study aims to estimate the emissions of methane gas from the landfills in Al-Hillah City, Iraq, from 2023 to 2070 and the producible electric energy from this amount. The estimating process was carried out using the Land GEM model and compared with traditional models. The obtained results demonstrated that the total estimated landfill methane emissions for 48 years are 875,217 tons, and the average annual methane emission is 18,234 tons based on a yearly waste accumulation rate of 1,046,413 tons and a total waste amount of 50,227,808 tons. The anticipated loads of methane gas can be utilized to generate about 287,442 MW/year of electricity from 2023 to 2070. In conclusion, the results obtained from this study could be evidence of the potential environmental and economic benefits of harvesting and reusing methane gas from landfills.

19.
Sci Rep ; 13(1): 14981, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696862

RESUMEN

The design and selection of ideal emitter discharge rates can be aided by accurate information regarding the wetted soil pattern under surface drip irrigation. The current field investigation was conducted in an apple orchard in SKUAST- Kashmir, Jammu and Kashmir, a Union Territory of India, during 2017-2019. The objective of the experiment was to examine the movement of moisture over time and assess the extent of wetting in both horizontal and vertical directions under point source drip irrigation with discharge rates of 2, 4, and 8 L h-1. At 30, 60, and 120 min since the beginning of irrigation, a soil pit was dug across the length of the wetted area on the surface in order to measure the wetting pattern. For measuring the soil moisture movement and wetted soil width and depth, three replicas of soil samples were collected according to the treatment and the average value were considered. As a result, 54 different experiments were conducted, resulting in the digging of pits [3 emitter discharge rates × 3 application times × 3 replications × 2 (after application and 24 after application)]. This study utilized the Drip-Irriwater model to evaluate and validate the accuracy of predictions of wetting fronts and soil moisture dynamics in both orientations. Results showed that the modeled values were very close to the actual field values, with a mean absolute error of 0.018, a mean bias error of 0.0005, a mean absolute percentage error of 7.3, a root mean square error of 0.023, a Pearson coefficient of 0.951, a coefficient of correlation of 0.918, and a Nash-Sutcliffe model efficiency coefficient of 0.887. The wetted width just after irrigation was measured at 14.65, 16.65, and 20.62 cm; 16.20, 20.25, and 23.90 cm; and 20.00, 24.50, and 28.81 cm in 2, 4, and 8 L h-1, at 30, 60, and 120 min, respectively, while the wetted depth was observed 13.10, 16.20, and 20.44 cm; 15.10, 21.50, and 26.00 cm; 19.40, 25.00, and 31.00 cm, respectively. As the flow rate from the emitter increased, the amount of moisture dissemination grew (both immediately and 24 h after irrigation). The soil moisture contents were observed 0.4300, 0.3808, 0.2298, 0.1604, and 0.1600 cm3 cm-3 just after irrigation in 2 L h-1 while 0.4300, 0.3841, 0.2385, 0.1607, and 0.1600 cm3 cm-3 were in 4 L h-1 and 0.4300, 0.3852, 0.2417, 0.1608, and 0.1600 cm3 cm-3 were in 8 L h-1 at 5, 10, 15, 20, and 25 cm soil depth in 30 min of application time. Similar distinct increments were found in 60, and 120 min of irrigation. The findings suggest that this simple model, which only requires soil, irrigation, and simulation parameters, is a valuable and practical tool for irrigation design. It provides information on soil wetting patterns and soil moisture distribution under a single emitter, which is important for effectively planning and designing a drip irrigation system. Investigating soil wetting patterns and moisture redistribution in the soil profile under point source drip irrigation helps promote efficient planning and design of a drip irrigation system.

20.
Heliyon ; 9(7): e18375, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519766

RESUMEN

The Bradost and Chinara mountains are two well-known geomorphic features in the Iraqi Kurdistan Region (IKR), forming two anticlines, besides Shireen and Sare Musa anticlines, which are located north of the Bradost anticline, all four anticlines trend NW - SE. The four anticlines are dissected by the Greater Zab River that swings along its course within the anticlines due to tens of very old landslides and/or plunges. The four studied anticlines are dissected by different thrust faults, which extend for a few kilometers. The thrust faults trend NW - SE; however, locally they deflect from the main trend. The Lower Jurassic rocks are the oldest exposed rocks in the studied area, whereas the rocks of the Bekhme Formation form the carapace of the Bradost and Chinara anticlines. Different structural and geomorphological features were interpreted from satellite images and those which are accessible were checked in the field, all of them indicate the four anticlines exhibit lateral growth. We have measured different aspects to elucidate the type of folds. The four anticlines are Detachment folds, with shallow decollement, which ranges in depth between (100-250) m.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...